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SUMMARY 

A general theory of the electroosmosis phenomenon in clectrophoretic experi- 
ments is developed from a set of fundamental viscous fluid dynamic equations of 
composite fluid systems. A simple physical model is chosen for an analytic study of 
the detailed qualitative behavior. Neglecting all effects due to the intrinsic electric 
characteristics of the neutral solvent molecules, expressions for the important experi- 
mentally measurable quantities, such as electroosmotic velocity, electroosmotic pres- 
sure and electroosmotic mobility, are derived in different physical situations. Applica- 
tion to the real electrophoresis system is discussed. 

INTRODUCTION 

The so-called electroosmosis effect1-4 is frequently observed in electro- 
phoresis experiments. Not only the charged mobile ions but also the neutral solvent 
fluid moves when an electric field is applied along the tube containing the fluid whose 
components are to be separated. In the case of a long tube with open ends, the fluid 
will move in one direction’. The fluid circulates in a tube with closed ends* (Fig. I). 
This electroosmosiseffect is due to the existance of charge on the tube wall, which 
apparently induces a double layer in its neighbourhood. When an electric field is applied 
tangential to the wall surface, there is a net tangential electric force acting on the charged 
fluid in the double layer and this force causes the fluid to move. In a system with open 
ends, the whole fluid will be moved by these tangential forces acting in the double 
layer owing to the existence of shearing stress of the fluid. In a tube with closed ends, 
the net flow of the liquid must be zero. The flow of the liquid along the wall in the dou- 
ble layer is counterbalanced by a flow in the opposite direction at the center of the 
tube. Therefore, there must be a pressure difference between the tube ends to generate 
this counter flo~~*~. Assuming a flow of Poiseuille’s type, the velocity profile has been 
calculated2 and the pressure difference has also been calculated by assuming known 
electrophoretic relations1*3. 

In this paper, we shall present a basic, detailed theory of electroosmosis. The 
mobile ion cloud formed from a given type of ion is considered as a component of 

* the fluid system. Then the electrophoretic system is a system of composite fluid -the 
neutral solvent fluid and different ionic charged fluids. These different fluids are de- 
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(a) 

Fig. 1. The elcctroosmosis cffcct. (a) Tube with open ends. (b) Tube with closed ends. 

scribed by a set of fluid dynamic equations coupled by the molecular interactions. 
The set of equations is derived microscopically in the Appendix. Starting from these 
fundamental equations, WC shall study most of the characteristics of clcctroosmosis 
in a simple model system. Both open- and closed-end systems will be discussed. The 
important relation between the double-layer screening length (A,-‘) and the velocity 
profiles of difl’erent component fluids, the expressions of electroosmotic velocity and 
the electroosmotic pressure will be derived. We shall show that the Poiseuille type of 
electroosmotic flowZq3 is a good approximation to the observations in the real 
electrophoresis experiments. 

In the next section, we shall propose a simple model and derive the set of fun- 
damental fluid dynamic equations. Part of these equations is solved in Section III to 
obtain the charge distribution (double-layer structure). In Section IV, the fluid dynamic 
equations are solved by neglecting the shearing stresses of the ionic fluids. The 
velocity profiles are calculated and the qualitative behavior is shown. The physical 
situation in a real elcctroplloresis experiment will be discussed and some conclusions 
will be given in the final section. 

SIMPLE MODEL AND FUNDAMENTAL FORMALISM 

We consider a solution system with ions A+, B- and solvent molecules Co in 

an electric field I?. There are three kinds of fluids, which are described by the density 

function n,(r?t) and fluid velocity ca(r’,r) (cl = +, -, 0) for A+, B- and Co, respectively. 
They satisfy (see Appendix) the equation of continuity 
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and the electric charge has the spatial distribution 

&(V) = &r+(Y) - ~7-091, (7) 

where we have assumed that the ions A +, B- have the charges + e and -e, respective- 
ly. At the center of the tube, the system is neutral, i.e. the positive and negative charge 
densities are equal, 

or 

#t+(O) m n_(O) - n, = constant (8) 

&(O) * 0 (9) 

Because of the non-vanishing charge inside the double layer, there exists a 
screening potential I there with the boundary values 

at the wall surface. I fpL I is called the zeta potential of the wall. cpL is positive (or 
negative) if the charge on the wall is positive (or negative). Then the total electric 
field inside the tube is 

E = I.6 ---T'(Y), 01 (11) 

The screening potential T(JJ) and screening charge L,~ are related by Poisson’s equation 

9)“(Y) = -4n &(_V)/& (12) 

where E is the dielectric constant of the solvent fluid. 
In practice, the ion densities are small compared with the solvent density 

11 f -45 110 .- (13) 

Then we consider the following two approximations: 
(i) The ion-ion friction force is small and can be neglected in comparison with 

the ion-solvent friction force 

(ii) The ionic fluid can be considered as a dilute gas and satisfies the equation 
of state 

Pa = n,(y) lC”T (15) 

In the isothermal case, i.e. T is constant, we have 

Vpa = /<UT [0, tl’a (y), 0] (16) 
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Substituting eqns. 3, 5, 6, 11, 14 and 16 into eqn. 4, we have the x-component equa- 
tions 

(feE - 5* t10 [l’f (_Y) - 1’0 (_V)]) /l* (_V) + ‘?j* 1.‘; (_V) = 0 (17) 

g+ I?, [l>+ (y) - 1’0 (y)] + 5- n- [I’_ (y) - I’0 (_I,)]} no t- ‘))o v;(y) - P, = 0 (18) 

and the y-component equations 

T e Cp’ (Y) lr,t (J’) - IcaTn; (V) = 0 (19) 

where 

p, = 2 . (21) 

is the solvent partial pressure gradient along the tube. We have chosen the simpler 
notation Ctt for E*o. The total pressure is the sum of three partial pressures 

P = Pt. -I- P- -I- PO (22) 

According to eqns. 15 and 22 

afo af 
P,=x=- ax (23) 

Because the total pressure gradient aP/&. is controlled by external sources (atmo- 
spheric pressure, end walls, etc.), P, is uniform across the tube cross section and thus 
is a constant. Eqns. 17-19 are the fundamental equations of electroosmosis effect. 

For mathematical convenience, we define the composite-fluid velocity 
\ :, 

V(y) = l’*(y) + % r’+(y) -I- (24) 

and the component relative ion-fluid velocity 

.f* 09 = I’* (v> - ~,o(.e (25) 

Then the fundamental equations of motion (eqns. 17 and 18) can be transformed to 
the equations of motion for V and ./; : 

~“CU) = $- {P.x - &J,( fi-) } (26) 

f”(Y) = MO {f*fl* ($- + -+-).f&, + -+f,(.l,} qz &$ (27) 
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It is understood from eqn. 26 that the total electric force acting on the composite fluid 
is E&u), which is identical to that on the whole system. 

IONIC CHARGE DISTRIBUTION 
. 

In the dilute ionic-gas model, the ionic densities n*(y) can be solved from 
eqn. 19. 

u*(y) = II, e T-g&J’) 

Substituting eqn. 28 into eqn. 7, we obtain the electric charge density 

eqf v) 
&v) = 2rl,e sinh w 

(28) 

(29) 

For a demonstration of the electroosmosis effect without complicated mathematics, 
we consider the special case of the high-temperature limit, 

Then we have the approximate forms 

and 

(30) 

(28’) 

(29’) 

Using the approximate form (eqn. 29’), Poisson’s equation (12) can be easily solved 
with the boundary condition (IO), 

T(Y) 
cod1 A,y 

* Tra COSll A,L 

where 

(31) 

(32) 

As-’ is the Debye screening length of the charged fluid. Substitutingeqn. 31 into eqn. 
29’, we obtain the induced charge density 

COSll Asy 
CJdJ,) * C’L cosl, A,L 

b 
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(4 (b) 
Fig. 2. (a) The ionic distributions. (b) The electrostatic screening potential and the screening charge 
distribution. 

where 

(33) 

is the induced charge density at the wall. Note that the induced charge has opposite 
sign to the wall potential cpl_, i.e. the wall charge will attract charges of opposite sign. 
The physical situation and the charge distribution c,?, electric potential r&~) and ionic 
distribution rr*((y) are shown in Fig. 2. In Fig. 2, we have assumed that the wall 
charges are negative, such that TV. -K 0. The induced charges are positive. 

ELECTROOSMOSIS EFFECT IN THE ABSENCE OF IONIC SHEARING STRESS 

In practice, because the ionic density is small in comparison with the solvent 
density, 17~ < 11~. Then the shearing stress constant of the ionic fluid is much smaller 
than that of the solvent 

71 f << ‘lo (34) 

(We shall justify this relation in a practical example later.) In the lowest approxima- 
tion, we may neglect the ionic shearing stress term VI*V;(JJ) in eqn. I7 and then we 
have the approximate equations 

{feE - E*rto[l**(_Y) - l’o(_v)]} n*(y) = 0 ,(l7’) 

and 

{5+17+[v+(4’) - I&V)] + e_n_[l’_(_Y) - a&V)])rt, + 7/Ol’b’(J!) - P, = 0 (18) 

Then Ids satisfies the equation 

(35) 
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Note that eqn. 35 is the lowest-order approximation of eqn. 26 for the composite 
fluid. From eqn. 24, V(V) w Ids in case the relation (34) is satisfied. Now, eqns. 
17’ and 35 can be easily solved, we obtain the solutions 

pLE cash A,Jf 
Vo(J’) = -$- (2 J" - - 

A,2 cash A,L 
+c (36) 

and 

l’j..J’) = h(J') rt &’ E (37) 

where 

(38) 

are the electric mobilities of the two ions A+ and B-, respectively. The two constants 
P, and C are to be determined from suitable boundary conditions on ro. We shall dis- 
cuss several special cases (with different boundary conditions) as follows. 

Ekctroosrnosis in an opetwvds trrlw with rough wall 
Because the two ends are open, the pressures at the two ends are equal to the 

external atmospheric pressure. We assume that the tube is horizontal and the 
gravitational force can be neglected. Then there is no pressure difference along the 
tube, i.e. the pressure gradient P, vanishes, 

P, = 0 (39) 

From the rough-wall boundary condition 

\*o(&L) = 0 (40) 

the constant C is determined and we obtain tile solutions “’ 

(41) 

The neutral solvent is moving inside the tube with velocity I&V) in the presence of an 
applied electric field (E # 0) and owing to the existence of the wall charges (cljL # 0, 
and thus Q,. # 0). This is the so-called electroosmosis effect (Fig. la). Because of the 
solvent motion, the ions are moving with the apparent velocities 

I**(J’) == A+(:’ E + do,) (37) 

which are different from tile values f,u,,, * E in the absence of electroosmosis effect. 
The behaviors for different values of&L are shown in Fig. 3. Because ro(_r) is propor- 
tional to E, we can define the apparent ionic electric mobilities by 

” f ( 1’) 
P*:(.“) = f_ (42) 
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Fig. 3. Elcctroosmosis effect in an open-end tube with rough wall. (a) The velocity profiles of com- 
ponent fluids. Positive. negative ion flows and the neutral solvent flow. The screening parameter 
AsL = IO is chosen. (b) The velocity profiles of neutral solvent fluid for different values of the 
screening parameter 1-L = 2, 5, IO, 100 and CQ. 

and we obtain the expression 

(43) 

In a practical situation, L * 1 cm, A, w lo+” cm-’ (see eqn. 65 of Section V), then 

Except very close to the tube wall, the solvent will move at a constant velocity I’,,., i.e. 

(L - I_l’I > a, ‘) (44) 

I’,,. is called the electroosmotic velocityl*z. For mathematical convenience, we may 
define the electroosmotic mobility, 

and from eqns. 32 and 33, it has the form 

(45) 

(46) 

This is the well-known Helmholz-Smoluchowski resultl*J. Then the apparent ionic 
mobilities will be 
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Etecrroosmosis in a closed-end tube 
In a closed-end tube (we also assume that the tube is very long, then we can 

neglect the end effect when we are considering the fluid far from the ends), the solvent 
fluid pulled by the electric field E near the wall cannot keep its forward motion every- 
where across the tube cross section. The fluid will be pushed back by the end walls 
and a counter flow is formed at the center (Fig. 1 b). Owing to the mass conservation 
of solvent at any tube cross section, instead of eqn. 39, we have the boundary condi- 
tion 

s 

I. 
dy v&) = 0 

- I. 
(48) 

Another boundary condition is due to the tube-wall condition. For mathematical 
convenience we shall consider two limiting cases: rough wall and smooth wall. 

Tile rough-wall ceil. The rough-wall condition is 

ro(fL) = 0 

Then we may calculate the pressure gradient 

321.E 
px = (&L)Z ( 

I _ tanh il,L. 

&L 1 iw 

and another constant C in eqn. 36 to obtain the solution 

W) = $- (; [3(+)2 - I] - ,c:;;; 2; - 3taJthL ($_ - ‘)} (5’) 

The characteristic behaviors are shown in Fig. 4. In most practical situations, 
&L z+ 1. At where not very close to the tube wall, the solvent will move with a 
parabolic velocity profile2 : 

where 

(&AC > 1) (52) 

(53) 

is called the electroosmotic velocity2, and the constant pressure gradient Px is given by 

(A,L >> 1) 

Then P, and I’,,. are related by Poiseuille’s law3 

(54) 

p, = 3?7$L. (‘53 
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Fig. 4. Electroosmosis effect in a closed-end tube with rough wall. (a) The velocity profiles of com- 
ponent fluids. The ionic mobilities /J(: arc chosen the same as in Fig. 3a, il,L = IO. (b) The velocity 
profiles of neutral solvent fluid For A,L = 2. 5. 10. 20 and co. 

and the velocity profile can be xx-written in the Poisseuille form* 

T/le smooth-wall ceil. If the wall surface is smooth, the stress of solvent at the 
wall will vanish, and we have 

I,(;(&-L) = 0 

Together with the boundary condition (48), we obtain the results: 

P, = g tanh &L 
s 

(57) 

(58) 

and 

The characteristic behavior of I*&) for different values of il,L is shown in Fig. 5. In 
practical cases, J.,L > I. At where not very near the tube walls, 

I1o(Y) _ +_ (3 (+)z - 1) (W B 1) (60) 
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X,L= IO X,L=2, 5, IO, (3 
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A 

(a> (b) 
Fig. 5. Elcctroosmosis effect in a closed-end tube with smooth wall. (a) The velocity profiles of com- 
ponent fluids. The ionic mobilities /c$ are chosen the same as in Figs. 3a and 4a, &t5 = 10. (b) The 
velocity profiles of neutral solvent fluid for A& = 2, 5, 10 and 00. 

has the same form as the rough-wall case (eqn. 52). But the electroosmotic pressure 

p, = 2g 
E 

(A,L >> 1) (61) 

and electroosmotic velocity 

(62) 

are different from the values of rough-wall cases, eqns. 55 and 53, respectively. Since 
the electroosmotic velocity I’,,, is experimentally measurable, it is possible to deter- 
mine the wall boundary condition (rough or smooth) from the experimental data. 
The bigger values of rOE. and Px in the smooth-wall case are physically expected be- 
cause in the rough-wall case there exists the additional frictional force between wall 
and the fluid, which can slow down the fluid motion and reduce the electroosmotic 
velocity. The reversed pressure force (P,) to cause the counter-flow will be pro- ’ 
portionally smaller. 

DISCUSSION AND CONCLUSION 

In a typical electrophoresis system, the orders of magnitude of different 
quantities are listed below: 

Mass of ion or solvent molecule 

mi,mow 10 -23 g 
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Solvent molecular density 

no M 10z2 crnv3 

Ionic densities 

n* w n, w 1Oly crnm3 

Ionic charge 

e w 4.8’ 10’‘0 C.S.U. 

Ionic mobilities 

p:“’ w IO-4 cmz.sec-’ *V-r w 10m2 cm3*sec-‘.e.s.u.-’ 

Room temperature 

T w 300 “K 

Solvent shearing viscosity 

70 M lo-‘P 

Solvent dielectric constant 

& w 107 

Tube cross-sectional radius 

L w 1 cm . . 

Applied electric field 

E= lo3 V/cm 

Then from eqn. 38, the ion-solvent frictional constant is 

E* =L 
TOP':' 

w 1O-3o c.g.s. unit (631 

From eqn. Al 8 of Appendix and the kinetic theory 5, the ionic shearing viscosity can 
be calculated and has the order of magnitude 
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Then we have 

1 
. w & IO-9 

. 70 

and the relation (34) is justified. It 
shearing stress in the calculation. 

From eqn. A18 of Appendix, 

(64) 

is a good approximation to neglect the ionic 

if the sizes of the ions and solvent molecules are of the same order. Then the magni- 
tude of the frictional force between ions will be small compared with that between 
ions and solvent molecules, 

because the relative velocities 1’ a - ~0 are of the same order. Then it is also a good ap- 
proximation to neglect the ion-ion frictional force in the calculation. 

The ionic screening constant ;I, can be estimated from eqn. 32, we have 

1, w lob cm-l -__ 

A,L m 10” 

then eqns. 4447, 52-56 and GO-62 are excellent approximations, i.e. 
Open-end cell with rough wall: 

(65) 

(66) 

(67) 

Px = 0 

Closed-end cell : 

(68) 

- L2) (6% 

where 

4--PLI E. 1 
“0% = 

47Vo * 
3 

and 

p 
x 

rough tube wall 

smooth tube wall 
(70) 

rough tube wall 

smooth tube wall 
(71) 
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Then the apparent ionic mobility has the form 

P*(Y) = P:’ f PF [3 (+)z - l] 

where 

rough tube wall 

smooth tube wall 

(72) 

(73) 

The quantity ,u~~. can be determined by measuring p*(y) experimentally (eqn. 72). 
Then we can determine the zeta potential I (pL j from eqn. 73. For example, from the 
result in Abramson’s experiment**“, 

pu,,. = 1.8~10-4cm2*sec-1~V’1. 

We may determine the order of magnitude of I vr. I, P, and e I cpI_ I/ksT and the 
values obtained are listed in Table I. 

TABLE I 

VALUES OF I pd.1, Pi AND “-/;‘;!-- FOR ROUGH-WALL AND SMOOTH-WALL CELLS 
II 

. _ . ..-.-. ___._ ___ _____ _ _ . .-_--..-... ._--. .~._ . -.._ .- _.._.... .._.. 
Rough wail Sn~oolli wall 

Zeta potential of tube wall 
I VL I 09 

Pressure gradient 
Px (dync*cm3 

f? I (PL I ._-----. 

knT __~-.____-__--__--_- 

10-t 104 

10-Z 10-z 

51 lo6 
- - -- 

We find from Table I that the wall zeta potential value I cpL I iS too big for 
the case of the smooth wall. The value for the rough wall is reasonable. Then we con- 
clude that the rough-tube-wall boundary condition is close to the practical situation. 

At room temperature, we find that the parameter e I rpL I//c&T is not much 
smaller than unity; especially in the smooth-wall case, it is a big number. This means 
that the linear approximations (eqns. 28’, 29’) in our calculations are not satisfactory 
for a real fitting, especially in case of smooth wall, where e I cpL j//cBT > 1 and thus 
there is great amount of screening charge in the neighbourhood of the wall (eqn. 29). 
Then the exact numerical calculation in a computer is necessary. However, considering 
only the high-temperature limit, we have clearly seen the physical mechanism and 
characteristic behavior of the electroosmosis effect in this paper. 

In this paper, because we neglect the ionic-fluid shearing stress in the calcula- 
tion, the ionic flow velocity will always have the form 

V*(Y) = kl(Y) * p:“’ E (37) 
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There is no special boundary condition necessary for the calculation of r*(y). For 
example, in the closed-end tube case, v*(y) never satisfied the mass-conservation 
boundary condition, i.e., 

f 

L 

dy t*,t(y) f 0 
-L 

in the 

# 0. 

it by neglecting 
It only expected to be approximate. But how good is it? Under 

what conditions is this approximation valid? This is an interesting problem currently 
under investigation and results will be published’. 

We have seen in this paper that the electroosmosis effect is essentially due to 
the existence of charges on the cell walls [then ~~ # 01. It has been shown 
experimentally that the electroosmosis effect exists in a system with solvent fluid made 
of polar molecules (like water) *mg. Then the charges on the walls are physically ex- 
pected to be the induced charges due to the permanent electric dipoles of the solvent 
molecules near the walls, Furthermore, the electrostatic screening effect of the electric 
dipole and quadrupole moments of the solvent molecules will also contribute to the 
electroosmosis effect. This has been neglected here. Then the electric characteristics 
of the solvent molecules play very important roles for the electroosmosis effect. These 
are very interesting for further investigations. 

In this paper, we have re-derived the very important and useful fluid dynamic 
eqn. 2 of multiple component system. It provides the fundamental fluid dynamic 
equation for electrophoresis with an electroosmosis effect. For mathematical 
simplicity, we have considered a cell bounded by two planes at y = fL and made 
calculations only at the high-temperature limit. The characteristic behavior of 
electroosmosis have been studied and discussed in detail. For a real system in a cir- 
cular tube, cylindrical coordinates must be used. However, qualitative changes are 
not expected, 

APPENDIX 

Sitnple derivation of the modl$ed Navier-Stokes equation for multiple component viscous 
fluid 

We consider a fluid system with several types of molecules. The molecules of 
thesametypea(a= 1,2, . . . . r) have the same mass ma and charge qa and form a 
component fluid system with density 

n,(i,,t) = (2 d[i - i~"'(r)l> 
\l=l 

and current density 

(Al) 
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where IV= is the total number of molecules of type CL. r’ J’a)(l) [pTa)(t)] is the position 
[momentum] of the&h molecule of type a at time t. ( > is the equilibrium ensemble 
average. 

Following the same derivation as in ref. 10, we can obtain the particle conserva- 
tion equation 

and the momentum conservation equation 

(A3) 

644) 

for each component with molecules of type a, where v is the gradient operator, and 

is the fluid velocity of component a. 

Fp,t) = <,$ S[;: - ;;“‘<t)] $yt,> 

is the bulk force density and 

>( i2”‘(~) _ ;Ia 

ma )> 

646) 

(A7) 

the stress force tensor on thecomponent fluid of type a. FJ (a'(t) is the total force acting 
on the&h molecule of type a at time t, and can be written as a sum of forces due to 
different sources : 

w9 
-b -. 

where E[v,‘a)(t), t] is theelectricfield at thelocation of the molecule, FJcx’*(t) is the force 
due to non-electric external source. zfJca)(t) is the frictional force due to the fluid (of 
all types) surrounding the jth molecule of type a. It can be written aslO*ll 

W) 

where r>a)(t) - ‘;s[r’ Jfa’(f), t] is the relative velocity of .the molecule of type a with 
respect to its surrounding fluid of type /3. cC;a is the frictional constant between a 
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molecule of type a and the fluid of type p. Substituting eqns. A8 and A9 into eqn. 
A6, following the same calculations as in ref. 10, we obtain the bulk force density 

where pp (<t) is the bulk force density due to non-electric external source. 
It is obvious from eqn. Al0 that the term 

(Al 1) 

* is the frictional force density acting on fluid of type a due to the fluid of type /3. 
Conversely, 

&ra n&t) IQ;0 - wd)l 6412) 

is the frictional force density acting on fluid of type /3 due to the fluid of type a. By 
Newton’s third law, we know that the two forces in eqns. Al 1 and A12 are action 
and reaction with each other, we have ’ 

Then we have 

c a@ = EaP nP (A 13a) 

and 

C/3a = 5pa na (AlSb) 

with 

Ea@ = Ef3a (A14) 

is a constant characteristic of the molecular collisions between the two types of 
molecules a and /3. 

Substituting eqns. Al3a and Al3b into eqn. AIO, the bulk force density 
can be written as 

The stress tensor Fa is also due to the molecules collisions. It can be written in a 
standard form11**2 
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where Pa is the partial pressure, ;a thestress tensor of the component fluid of type (I, 
and 

(A17) 

‘qa and va are the viscosity coefficients of component fluid u. 
. In case of mixture of dilute gases, the frictional coefficients in eqns. Al3a and 

Al3b can be calculated from Boltzmann’s kinetic tlleory*z*13. By assuming hard sphere 
collision with total cross section oao between molecules of types CL and p, the constant 
Eaa can be calcultaed and has the formI 

(Al81 

where T is the absolute temperature and I?,, the Boltzmann constant. 
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